Disintegrated Parts


Created: July 16, 2021
Last Modified:October 22, 2024

Euclidean Distance

The Euclidean distance is a classic method to calculate a distance between two (multi-dimensional) points.

\[ED(T_a,\ T_b)=\sum _{i=1} ^n d(p_{ai}, p_{bi})\]

Whereas $T$ denotes the trajectory $[p_0, p_i, p_n]$

1 dimension

$d(p,\ q)=|p-q|.$

Or in more generalized form:

$d(p,\ q)=\sqrt {(p-q)^2}.$

2 dimensions

$d(p,\ q)=\sqrt {(q_1-p_1)^2 + (q_2-p_2)^2}.$

n dimensions

$d(p,\ q)=\sqrt {(p_1-q_1)^2 + (p_2-q_2)^2 + … + (p_i-q_i)^2 + … + (p_n-q_n)^2}.$


No webmentions were found.